A Burkholderia cenocepacia gene encoding a non-functional tyrosine phosphatase is required for the delayed maturation of the bacteria-containing vacuoles in macrophages.
نویسندگان
چکیده
Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles [B. cenocepacia-containing vacuoles (BcCVs)] that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to the parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the ΔBCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since ΔBCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in Burkholderia multivorans confers to this bacterium a similar phagosomal maturation delay to that found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.
منابع مشابه
Inactivation of macrophage Rab7 by Burkholderia cenocepacia.
Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism. Vacuoles containing B. cenocepacia strain J231...
متن کاملBurkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages.
Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator p...
متن کاملBurkholderia cenocepacia Type VI Secretion System Mediates Escape of Type II Secreted Proteins into the Cytoplasm of Infected Macrophages
Burkholderia cenocepacia is an opportunistic pathogen that survives intracellularly in macrophages and causes serious respiratory infections in patients with cystic fibrosis. We have previously shown that bacterial survival occurs in bacteria-containing membrane vacuoles (BcCVs) resembling arrested autophagosomes. Intracellular bacteria stimulate IL-1β secretion in a caspase-1-dependent manner ...
متن کاملThe mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages.
Burkholderia cenocepacia, a bacterium commonly found in the environment, is an important opportunistic pathogen in patients with cystic fibrosis (CF). Very little is known about the mechanisms by which B. cenocepacia causes disease, but chronic infection of the airways in CF patients may be associated, at least in part, with the ability of this bacterium to survive within epithelial cells and m...
متن کاملIFN-γ Stimulates Autophagy-Mediated Clearance of Burkholderia cenocepacia in Human Cystic Fibrosis Macrophages
Burkholderia cenocepacia is a virulent pathogen that causes significant morbidity and mortality in patients with cystic fibrosis (CF), survives intracellularly in macrophages, and uniquely causes systemic infections in CF. Autophagy is a physiologic process that involves engulfing non-functional organelles and proteins and delivering them for lysosomal degradation, but also plays a role in elim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 160 Pt 7 شماره
صفحات -
تاریخ انتشار 2014